
A 233 km Tunnel for Lepton and Hadron Colliders

D. J. Summers, L. M. Cremaldi, A. Datta, M. Duraisamy, T. Luo, G. T. Lyons

Dept. of Physics and Astronomy, University of Mississippi-Oxford, University, MS 38677 USA

Abstract. A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC)
tunnel passing through Fermilab. Here we outline implementations of e+e−, pp̄, and µ+µ− collider rings in this tunnel using
recent technological innovations. The 240 and 500 GeV e+e− colliders employ Crab Waist Crossings, ultra low emittance
damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete
dipoles. Some details are also provided for a high luminosity 240 GeV e+e− collider and 1.75 TeV muon accelerator in a
Fermilab site filler tunnel. The 40 TeV pp̄ collider uses the high intensity Fermilab p̄ source, exploits high cross sections
for pp̄ production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with
liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV
of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino
radiation with phase shifting, roller coaster motion in a FODO lattice.
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INTRODUCTION

In 2001, a cost estimate [1] for boring a 233 km circumference tunnel in northern Illinois was made for the proposed
Very Large Hadron Collider (VLHC [2]). Level 12 foot and 16 foot diameter tunnels were estimated to cost $2.55
billion and $2.94 billion, respectively. Included were a shotcrete lined tunnel, caverns, vertical access shafts, and 25%
contingency. Since then inflation has increased prices, but more automation has been added to tunneling in pulling
tunnel boring machines forward and in placing rock stabilization bolts [3]. Here we outline how such a tunnel might
be used by lepton and hadron colliders over many years. We examine circular 240 and 500 GeV e+e− colliders [3, 4],
a 40 TeV p p̄ collider, and a 35 TeV µ+µ− collider [3, 5]. The recent observation of a 126 GeV/c2 boson [6] provides
motivation for 240 GeV e+e−→ Z 0h0 [7] and 126 GeV µ+µ− → h0 [8] colliders .

240 and 500 GeV e+e− Ring Colliders

A crab waist crossing [9] as developed for the next generation of B factories is employed to extend the energy
of circular e+e− colliders beyond LEP. Low emittance bunches from precision damping rings for the proposed
International Linear Collider (ILC [10]) are used as well the short vertical focal length ILC collision region optics.

A beam crossing angle is introduced to allow short focal length, β ∗
y , collision optics. The horizontal emittance of

the beam is driven by quantum fluctuations in synchrotron radiation [11]. The vertical emittance is lowered until the
tune-tune shift limit, ξy, is reached. The crossing angle independent luminosity is given by [3, 9]:

L = 2.167×1034 E(GeV) I(Amps) ξy/β ∗
y (cm). (1)

Preliminary parameters for three high energy, high luminosity machines are given in Table 1. One of the 240 GeV
machines fits in a Fermilab site filler ring. A 120 mm bore Nb3Sn quadrupole [12] may be useful in getting the beam
to fit into the final focus.

However, some beam particles are lost due to beamstrahlung tails when the momentum changes so much that the
ring and Interaction Point (IP) can no longer transport the particles. Equation 2 shown below is used to calculate
luminosities under these conditions [13]. L is luminosity, h is the hourglass factor, η is momentum acceptance, ξy is
the vertical beam-beam tune shift, E0 is the beam energy, εy is the vertical geometric emittance, P is the synchrotron
radiation power for both beams, R is the ring radius, and Rb is the bending radius. To still attain reasonable luminosities
we use a large ring, increase the normal ring/IP η = 1% momentum acceptance to η = 3% gaining a factor of



TABLE 1. Strawman parameters for three e+e− colliders which exploit the crab waist crossing [9].

Parameter Name (Units) Formulae

e+,e− energy (GeV) 120, 120 120, 120 250, 250

Ring Circumference: C (km) 15 233 233

Ring Radius: R (meters) 2400 37, 100 37, 100 R = C / 2π

Bending radius: ρ (meters) 1900 29, 000 29, 000

Relativistic γ 235, 000 235, 000 489, 000 E / m = (120, 250) /0.000511

Collision frequency: f0 (kHz) 65.1 978 52.8 (Bunches / beam) c / 2πR

Half crossing angle: θ (mr) 34 34 34

Bunch length (mm) 6.67 6.67 6.67

σx,σy IP beam size (µm) 8.5, 0.0244 8.5, 0.0244 8.5, 0.0115 σ =
√

ε β ∗

IP β ∗
x ,β ∗

y (cm) 2, 0.06 2, 0.06 2, 0.06

Geometric emittance: εx (nm) 3.6 3.6 3.6 ∼ (Lattice Type)γ 2(ℓ half cell/ρ)3 [11]

Geometric emittance: εy (nm) 0.00099 0.00099 0.00022

Norm. emit.: εN
x ,εN

y (mm-mrad) 846, 0.235 846, 0.235 1760, 0.108 εN = γ ε

Beam-beam tune shift: ξx 0.0014 0.0014 0.0007 re N/4πεN
x ≈ 2reNβ ∗

x /(πγσ2
x θ 2) [9]

Beam-beam tune shift: ξy 0.20 0.20 0.23 [4] re N/4πεN
y ≈ reNβ ∗

y /(2πγσyσz θ ) [9]

No. of bunches / beam 3 700 41

Particles / bunch [4] 4.85×1011 4.85×1011 4.85×1011 δN2 = 2N2σx/(θσz) = 3.63×1010 [9]

Dipole field (Tesla) 0.21 0.014 0.029 B = (120, 250) /.3ρ (meters)

Current / beam (Amps) 0.00505 0.07 0.0041 1.6×10−19 (particles/beam) c / 2πR

E loss / orbit (GeV) 9.7 0.63 11.9 8.85×10−5 E4(GeV)/ρ(m)

Synch rad power (MW/ beam) 49 44 49 8.85×10−2 E4(GeV) I(amps)/ρ(m)

Total synch wall power (MW) 198 176 198

IP β max
x , β max

y (km) 40, 250 40, 250 40, 250

IP σ max
x , σ max

y (mm) 12, 0.5 12, 0.5 12, 0.23 σ max =
√

ε β max

IP Sextupole Strength (1/m)2 0.0007 0.0007 0.0007 K2 = [1/(2θ β max
y β ∗

y )]
√

β ∗
x /β max

x [9]

Luminosity (cm−2 s−1) 4.4×1034 6.1×1035 7.6×1034 L = N1 (δN2) f0/(4πσx σy)

32/3 = 2.08, and employ the ILC vertical emittance. Luminosity scales linearly with ring circumference for fixed
synchrotron power. There is experience with 3% momentum acceptance rings [14], which would need to be designed
to minimize synchrotron radiation losses. A large momentum acceptance IP design would be new, probably allocating
more real estate to sextupoles and less to quadrupoles, if it can be built without too much of an increase in focal length.
The nominal normalized ILC vertical emittance is 0.04 mm-mrad. This yields geometric emittances of 0.000170 nm
and 0.000082 nm for 120 GeV (γ = 235,000) and 250 GeV (γ = 489,000) beams, respectively. Results are in Table
2. The luminosity might also be improved by refreshing the beam at up to a few times per second instead of the the
roughly 12 minute interval [7] required by radiative Bhabba scattering. Table 2 shows refresh times that that add 10%
to power requirements beyond synchrotron radiation. Finally, Reference [13] notes that a crab waist crossing would
add a further factor of 22/3 = 1.6 to the luminosities shown in the last line of Table 2.

L

1034 cm−2 s−1
≈

100hη2/3 ξ
1/3
y

(E0/100 GeV)13/3 (εy/nm)1/3
×

(

P

100MW

)(

2πR

100 km

)

Rb

R
(2)

The dipoles for this 233 km circumference ring have a magnetic field four times lower than used at the CERN LEP
machine. To maintain good field quality, particularly at injection, a soft magnetic material is needed. Grain oriented
silicon steel [15] is chosen for the dipoles because its coercivity is 1/5 that of ultra low carbon steel [16]. Horizontal
bands sandwich the top and bottom of C shaped laminations to permit a high permeability path in the entire flux return
circuit. Putting concrete in between laminations provides space for the four bands. If an even lower coercivity material
is absolutely required, hydrogen annealed mu metal (77% nickel, 16% iron) might suffice.



TABLE 2. Strawman parameters for three e+e− colliders including beamstrahlung tail limitations [13]. A beam refresh time
of a second or less might improve luminosity but is not included in Equation 2 values on the last line.

Parameter Name (Units) Formulae

E0 : e+,e− energy (GeV) 120, 120 120, 120 250, 250

Ring Circumference: C (km) 15 233 233

Ring Radius: R (km) 2.4 37.1 37.1 R = C / 2π

Bending radius: Rb (km) 1.9 29 29

Hourglass factor, h 0.8 0.8 0.8

Ring and IP momentum acceptance η 0.03 0.03 0.03

Relativistic γ 235, 000 235, 000 489, 000 E / m = (120, 250) /0.000511

Norm. emit.: εN
y (mm-mrad) 0.04 0.04 0.04 εN = γ ε

Geometric emittance: εy (nm) 0.000170 0.000170 0.000082

Beam-beam tune shift: ξy 0.15 0.15 0.15 re N/4πεN
y

E loss / orbit (GeV) 9.7 0.63 11.9 8.85×10−5 E4(GeV)/Rb(m)

Beam refresh time (seconds) 0.006 1.5 0.16 10× (E0 /Eloss/orbit)(C/300,000)

Synch rad power, both beams (MW) 100 100 100 8.85×10−2 E4(GeV) I(amps)/Rb(m)

Luminosity (cm−2 s−1) 4.0×1034 6.3×1035 3.3×1034 Equation 2 [13]

Energy Frontier 40 TeV p p̄ Collider

A 40 TeV p p̄ collider fits in the 233 km tunnel with 2 Tesla H-frame dipoles. Ultra low carbon steel [16] is used
for the dipoles. The low coercivity/ hysteresis loss of this steel permits reuse of these magnets for a muon collider.
The magnet coils consist of 52 turns of 4mm wide YBCO superconducting ribbon. Each ribbon carries 500 amps for
a total of 26, 000 ampere / turns. The coils are cooled with liquid neon at 25K [3].

The Tevatron luminosity [17] of 4×1032 cm−2 s−1 is scaled to yield:

L = (20/37)(4×1032) = 2.16×1032 cm−2 s−1. (3)

The factor of 20 increase comes from the energy increase and the factor of 37 decrease comes from lowering the

FIGURE 1. p p̄ and p p cross sections are generated [19] for a particle similar to the top quark as a function of mass.



collision frequency due to the larger ring. As shown in Fig. 1, the p p̄ cross section for many high mass states is an
order of magnitude larger than the p p cross section. Thus, for high mass objects near threshold, this collider, with the
Tevatron p̄ source, has 2x more events and 5x less background than the Superconducting Super Collider (SSC) p p

design with a luminosity of 1033 cm−2 s−1. The cross section for p p̄ collisions does rise from 80 to 120 mb as
√

s goes
from 2 to 40 TeV. But this increased p̄ burn rate might be ameliorated by adding a second, parallel p̄ accumulator ring.
The current limitation on the Tevatron p̄ source is the accumulator ring with a p̄ stacking rate of 26×1010 p̄ / hour [18].
The debuncher ring can supply 40×1010 p̄ / hour.

Energy Frontier 35 TeV µ+µ− Collider

First we calculate the neutrino radiation ( µ−→ e− νe νµ and µ+ → e+ νe νµ ) for a ring with 17.5 TeV muons [20].
A 17.5 TeV muon lifetime is 0.364 s and γ = 165,000.

τ = γ τµ± =
17.5TeV

105.7MeV
2.2×10−6 s = 0.364s (4)

Dave
exit [Sievert] = 2.9×10−24×

Nµ (Eµ [TeV])3

D[m]
= 2.9×10−24×

(1.1×1020) (17.5 TeV)3

300 m
= 0.0057 Sv/yr (5)

The ring is 300 m underground. Two bunches of 2×1012 muons are produced every 0.364 seconds giving 1.1×1020

muons per 107 second accelerator year. The radiation dose, which equals the yearly dose from background, is too
high, 0.0057 Sieverts /year or 570 mrem /year. A neutrino from the three body decay of a 17.5 TeV/c muon has
a 20 MeV/c transverse momentum and a 5.8 TeV/c forward momentum yielding a rather small opening angle of
(20×106)/(5.8×1012) = 3.4 µ rad. So we dilute the radiation with a roller coaster motion [21] in FODO lattice arcs
similar to the Tevatron helical lattice motion [22]. A rise or fall of 1 cm over a distance of 20 m leads to a 500 µ rad
angle, 150 times larger than angle from muon decay. The radiation dose falls by this factor to 4 mrem /year, equivalent
to eating one banana a day. Vertical bumps are used to phase shift the roller coaster motion a few times a day. A similar
phase shifting, helical lattice is used in straight sections.

Now we see if beam power and energy losses in magnets are plausible. The same magnets are used for muon
acceleration as were used for the p p̄ machine. The beam power for 4×1012 17.5 TeV muons is:

P =
(4×1012)(17.5×1012)(1.6×10−19)

0.364s
= 31MW. (6)

The ultra low carbon steel eddy current losses are [23]:

P = [Duty Factor][Volume]
(2π f Bw)2

24ρ
= 14MW, (7)

where the duty factor due to the flat top is 0.30, the steel volume is 15, 000 m3, the frequency is 9 Hz, the magnetic
field averages 0.9 Tesla in the steel, the lamination width is 0.0005 m, and the resistivity of the steel is 9.6× 10−9

nΩ-m. Using the Steinmetz Law [24] the hysteresis loss is:

Energy / cycle = (.001)(9000gauss)1.6 = 2100ergs / cc (8)

P= (Vol /cycle) (2100 ergs /cc) (10−7 joules /erg) = 9 MW, (9)

where the volume is 15, 000 m3 times 106 cc /m3 and the cycle time is 0.364 seconds. Tests of YBCO superconductor
ramping at 9 Hz are showing progress [25].

Next, we accelerate muons [26] in a Fermilab site filler ring to 1.75 TeV, and then to 17.5 TeV in the 233 km
circumference ring using 2 Tesla dipoles, 250 GV of superconducting RF, and 63 orbits. Phase /frequency locked
magnetrons [27] might supply power for the RF, if they can be developed as a more efficient alternative to klystrons.

SURVIVAL =
63

∏
N=1

exp

[ −2πRmµ±

[1625 +(250N)]cτ

]

= 71% (10)



A final focus system has been worked out for a 30 TeV, round beam, muon collider [28]. The IP beta function, β ∗,
is 0.48 cm. Quadrupole gradients are below 400 T/m and peak fields are below 15 T. Twelve meters is kept free for a
detector. Total length of this final focus system is 2 km. Initially the acceleration ring is used as a 35 TeV collider with
two detectors to give a luminosity of:

L =
γ N 2 f0

4πεNβ ∗
=

165,000(2×1012)2 2575

4π (25×10−4 cm)0.48
= 1.1×10 35 cm−2 s−1 (11)

A smaller collision ring with higher field dipole magnets, higher collision rates, and higher luminosity could be
added as an upgrade. Progress is being made on εN = 25 mm-mrad cooled muon bunches but more work remains [29].

SUMMARY

A site filler ring at Fermilab permits 240 GeV e+e− and 3.5 TeV µ+µ− colliders. The 233 km tunnel would be used
by a series of machines sequentially over many decades. The tunnel would first be filled with 140 gauss dipoles for
the 240 GeV e+e− machine aimed at producing one million e+e−→ Z 0h0 reactions per year. The Tevatron p̄ source
gives a competitive event rate with a 40 TeV energy frontier hadron collider based on 2 T dipole magnets. Muon
acceleration from 1.75 to 17.5 TeV with 250 GV of RF and 2 T dipole magnets with 9 Hz ramped superconducting
coils looks promising. Neutrino radiation might be rasterized. A 35 TeV muon collider would have 70x the center of
mass energy of the ILC, while using half the RF of the ILC.
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